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ABSTRACT: Spare part inventories are necessities in keeping equipment in operating condition. The de-
sign of a spare part inventory is risk management by nature. It is a multi-phase task to meet the associated 
economical and technical requirements. A typical target is to optimize the size of the stock by balancing the 
costs against the stock-out risk. This paper is a brief presentation of an effort toward a broad-based methodol-
ogy. Our model can be characterized as a simulation-calculation scheme that connects organically inventory 
design, process redundancy, maintenance policy, spare part reliability & demand, and shortage & cost ac-
counting. The multitude of variables and concepts in our model enables a vast number of interpretations. 
Since the sub-models imitate the reality in time order, the model is easy to extend when new knowledge or 
new features need to be taken into account. The corresponding and still developing software extends continu-
ously the applicability. At present, a tool for the optimization of selected cost combinations has been imple-
mented. 
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1 INTRODUCTION 

Spare part inventory control and management has 
been intensively researched for many decades. Ex-
tensive literature and research reports have been 
published. Kennedy et al. (2002) have provided a 
comprehensive literature overview. A large part of 
the reported methods seem to be case specific and 
restrictive in scope. The model in question consists 
often of a few analytic-numeric formulas and a small 
number of variables.  

Simulation-based and more versatile models exist, 
but a more comprising methodology would be desir-
able. Our model contributes to a generic approach. 
The kernel, a time-ordered simulation-calculation 
scheme (Fig. 1), is readily open for extensions and 
new details, and not so exposed to distorting and re-
stricting assumptions as analytic-numeric methods. 
The inventory policy is based on continuous review. 
The actors are one stock, one critical part (or group 
of parts), one or more part suppliers, and one or 
more part consumers (customers).  

We begin with a superficial description following 
Figure 1. The first module, PartRel, offers several 
methods for the construction of probability distribu-

tions describing the failure tendency of the part at 
different stress levels. 

The calculation of spare part demand is then 
based on a thorough model of the technical system. 
PrepA introduces a ‘cluster structure’ with a multi-
plicity of parameters for the definition of failure 
logic, stress, redundancies, operation and mainte-
nance strategies, etc. This leads to each customer’s 
consumption of spare parts and the total distribution 
of predictable and unpredictable requests to the 
stock during a design horizon 0…T (often typical for 
budgeting). 

In StockA, the stock balance is simulated event by 
event under the guidance of control parameters (or-
der point, order quantity, and the interval for ad-
vance order) and suppliers’ delivery data. The result-
ing detailed event log is the base for calculation of 
decision-guiding results. A variety of figures, tables, 
probabilities and distributions describing the proper-
ties of the stock follow: Order interval, consump-
tion, turnover, etc. Several results on probability and 
duration for different types of part shortage are ap-
plicable in subsequent risk evaluation. 

After cost inputs on the cluster level, the loss as-
sociated with parts shortage and its consequences 

 



are obtained in PrepB on the customer level. Gen-
eral economical inputs in StockB lead then to the fi-
nal cost and penalty accounting. Means, deviations, 
quantiles and distributions follow for different areas 
of cost and their combinations. 

 
Figure 1. Main structure of the model 

2 PART CONSUMPTION AND DEMAND ON 
STOCK 

The very short description of our model given above 
will now be deepened. Spare part demand, process 
redundancy, and maintenance policy are main sub-
jects of this section. The following samples from the 
literature will guide and illuminate the reader in 
his/her comparisons with our method. 

Willemain et al. (2004) and Regattieri et al. 
(2005) deal with forecasting methods for intermit-
tent demand. Smidt-Destombes et al. (2005) provide 
a model for redundant systems with identical, repa-
rable components under condition based mainte-
nance policy. Vaughan (2005) brings out a model 
where demand for the spare parts arises due to regu-
larly scheduled preventive maintenance and random 
failure of units in service with constant failure rate. 
Akcali et al. (2001) use the Gamma-distribution for 
the demand of slow moving parts during lead-time. 
(Authors employ rarely other distributions than the 
exponential, normal or Poisson distribution.) 

2.1 Stress levels and reliability of parts (PartRel) 
The part locations in customers’ assemblies are the 
real spare part consumers. The locations can be as-
sociated with different stress/uu, where uu is a natu-
ral unit for measuring usage of the part. The de-
signer defines a number of stress levels (φ = 1, 2, …) 
and assesses each location to an appropriate level. 

The stress levels are common for all customers. Note 
that it is not necessary to define the concept of stress 
exactly.  

For each stress level φ, the designer prepares in 
PartRel (Fig. 1) a Gamma model for the probability 
Rφ(x) that the part is non-failed at x (uu). The aver-
age µφ (uu) and the deviation σφ (uu) are input data to 
PrepA. This distribution can be designed as a 
weighted mixture of several versions arising from 
different types of initial data: means, deviations, 
quantiles, censored/non-censored data, etc. (Fig. 2). 
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Figure 2. Reliability from censored data 

2.2 Fault logic and maintenance policy (PrepA) 
For the modeling of a customer’s spare part con-
sumption, our model provides the concept of a k/n-
cluster. This is a subset of part locations defined by 
the following parameters: 

 
n  number of parts in the cluster, n ≥ 1 
k  the cluster is failed when k parts have failed, 1 ≤ k ≤ n 
nφ number of parts belonging to stress level φ =1,2... (n = 

n1+n2+...) 
K usage (uu) during the design interval 0…T (tu), tu = time 

unit 
H  scheduled exchange interval (uu), 0 ≤ H ≤ ∞ 
∆H interval (uu) to be described below, 0 ≤ ∆H ≤ H 
dH interval (uu) to be described below, 0 ≤ dH ≤ ∆H 
δ  probability that a part fails immediately after exchange 
ε  probability that a scheduled exchange is left unperformed 

 
A customer’s part locations can form clusters of 

different type. Single parts are of course 1/1-
clusters. Some additional descriptions can be infor-
mative. 

If a k/n-cluster does not fail (less than k parts 
failed) during a scheduled interval H, the whole 
cluster is replaced (n-exchange). If a cluster failure 
instant is not nearer than ∆H from the next sched-
uled n-exchange, then the failed (k) parts only will 
be replaced (k-exchange); otherwise, the whole clus-
ter is replaced (kn-exchange). 

After a k-exchange, the planned schedule is still 
valid, but after a kn-exchange, there are two alterna-
tives: If the kn-exchange was nearer than dH to the 
next scheduled n-exchange, this will only be ig-
nored; otherwise the schedule restarts from this kn-
exchange. 



The simulation principle as such corresponds to 
hot redundancy. However, the usage parameter K 
and the possibility that the parts of a cluster can 
work at different stress levels enable also modeling 
of cold redundancy. 

2.3 Customer’s part consumption and demand on 
stock (PrepA) 

Every installed spare part is assumed to have the 
same initial condition. Thus, its failing is determined 
by the stress level of its location (µφ, σφ, Sect. 2.1). 
Nonzero part age (uu) at the start of simulation can 
also be taken into account. The customer’s cluster 
structure is then simulated, leading to the number of 
n-, k- and kn-exchanges during 0…T, and the prob-
ability for different quantities wanted. 

A customer’s request to the stock (instant and 
number of parts) will be called predictable, if the 
stock knows at least ∆t (tu) in advance. All other re-
quests will be called unpredictable. The model as-
sumes that all n-exchanges and a fraction 0 ≤ p ≤ 1 
of k- and kn-exchanges lead to predictable requests. 
For example, the presence of failure diagnostics can 
be modeled with a nonzero parameter p. A cus-
tomer’s demand on stock during the interval 0…T 
consists of the following information: 

 
Data 1.  Customer’s demand. 
Unpredictable requests: 

- Average # of requests (k & kn, fraction 1-p)  
- Corresponding deviation 
- Probabilities for required # of parts 

Predictable requests: 
- Instants of requests caused by n-exchanges  
- Corresponding # of required parts  
- # of parts of k- or kn-exchanges, fraction p 

 
This data can also be entered directly, without 

employing PartRel and PrepA. For example, the 
‘waste’ (obsolescence, theft, etc.) is a customer of 
this type. 

2.4 Distribution of requests (StockA) 
The total mean µ and deviation σ of the number N of 
unpredictable requests during 0…T are determined 
from customers’ demand data (Data 1), assuming 
customers are independent of each other. Since often 
µ ≠ σ 2, the Poisson model is too restrictive. Our 
count data model possesses full dispersion ability: 
(µ − ⎣µ⎦)(⎣µ⎦ + 1 − µ) ≤ σ 2 ≤ (µ - a)(b - µ), a ≤ N ≤ 
b, where ⎣x⎦ denotes the greatest integer ≤ x. 

During simulation, a random variate N is gener-
ated. A point process spread N request instants on 
0…T. At each instant, the customer and the number 
of parts wanted are then generated using probabili-
ties derived from demand data. Periodicity and un-
evenness in the spread can also be modeled (Fig. 3). 

Predictable requests caused by n-exchange are of 
course directly placed on 0…T, and the predictable 
fraction p of k- or kn-exchange can be placed ‘here 
and there’ (Fig. 4). The ’real’ instants (simulated in 
section 2.3) can differ from this, e.g. since the 
schedule may change ex tempore (Sect. 2.2). How-
ever, the reorder principle below indicates the dif-
ference can be ignored (Sect. 3.1).  
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Figure 3. Spread of unpredictable requests (T=720) 
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Figure 4. Predictable requests (T=720) 

3 MANAGING INVENTORY BALANCE 

The objective of inventory control is to achieve, in 
some sense, an optimal policy. Kennedy et al. (2001) 
encapsulated some central issues to be resolved: 
when to place an order, how many units to order, 
and the choice of objective, e.g. to reduce costs or to 
increase availability.  

Kabir & Farrash (1996) have implemented an in-
ventory model by using the SLAM simulation lan-
guage for determining a jointly optimal age re-
placement and spare part provisioning policy. The 
policy is formulated by combining age replacement 
policy with an inventory policy of the continuous 
review type. The optimal values of the decision 
variables are obtained by minimizing the total cost 
of replacement and inventory.  

Ni et al. (2004) present a model where the infor-
mation of demand and replenishment is abstracted in 
terms of asset arrivals, part scraps, and service lead-
times. They present an objective function for a recy-
clable inventory to achieve on time maintenance 
with low inventory costs, where tardiness penalties 
for the maintenance delay are converted to inventory 
backorder costs.  

We will now continue the description of our 
method. Again, we hope the references mentioned 
above can serve the reader as comparisons. 



3.1 Part supply and control variables (StockA) 
Two groups of part suppliers can be modeled, one is 
for predictable and the other for unpredictable re-
quests. A supplier is characterized by a Gamma-
modeled lead-time (minimum, mean, deviation), the 
probability to be chosen, and the prices for delivery 
(per order and per item). Thus, the choice of supplier 
is both dynamic and random. 

The lead-time is of course a sum of several 
phases. For example, if the repair shop is a supplier, 
the repair time is part of lead-time. (Some versions 
of our model support this decomposition.). 

The model treats predictable requests in the fol-
lowing way: When the stock knows a customer or 
customers will request for m parts totally at a certain 
time instant t (tu), an advance order for exactly m 
parts is set at the time instant t-∆t. Note that the 
same ∆t defines predictability (Sect. 2.3)! 

Unpredictable requests again are governed as fol-
lows: At the beginning of the simulation, the stock 
balance equals the reorder point, r parts, and the or-
der quantity (‘lot size’) is q parts. Thereafter, always 
when q parts have been unpredictably requested, the 
stock orders q parts. This happens even if previously 
ordered goods have not yet arrived. Otherwise, a 
balance would perhaps not be attainable. 

3.2 Stock balance and service capacity (StockA) 
Stochastic simulation under the control r, q, ∆t 
(Sect. 3.1) produces a ’logbook’ describing events 
and causes in chronological order for a large number 
of intervals 0…T. The first indicators of design suc-
cess or non-success are the random samples of the 
stock balance (Fig. 5). 
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Figure 5. Balance sample (r=3, q=2, ∆t=40, T=720) 

 
Good general measures on how the inventory de-

sign succeeds are the service grades, which de-
scribe, from different viewpoints, how often stock-
out periods occur, and the stock-out period, i.e. the 
length of single intervals with negative balance (Fig. 
5): 

 
P1 probability that the customer’s request is fully satisfied 
P2 probability that the required part is available in the stock 
P3 probability of no lack of parts during the T-interval 

mp average stock-out period (tu) 
sp corresponding deviation (tu) 
 

The stock-out period is typically a heavy-tailed 
random variable. Our model employs a modified 
Beta-distribution. Several more differentiated results 
on non-service are also obtained (partial shortages, 
types of request, etc). 

Many common stock output variables are of 
course computed: part consumption, order interval, 
deliveries, stock turn, usage volume, the time a part 
spends in stock, etc. (means, deviations, quantiles 
and probability distributions).  

3.3 Customer’s shortage costs (PrepB) 
Let the triple P2, mp, sp stand for service capacity 
(Sect. 3.2). The stock-out period (mp, sp) is an upper 
estimate for the delay experienced by customers. For 
example, a customer may arrive during a shortage 
period, or a delivery may satisfy some of the waiting 
customers but not all. The less such (undesirable) 
situations occur, the more accurate is the estimate. 
Further, we assume the same stock shortage prob-
ability 1-P2 is valid for each requested part. Thus, 
the number of parts obtained by a customer comes 
from a truncated geometric distribution with the pa-
rameters P2 and the requested quantity. 

According to preceding sections, all customers’ 
are factors behind the service capacity. Consider a 
customer, who took part in the stock simulation 
above and whose consumption was assessed in 
PrepA (Sect. 2.2-3). The shortage costs of this cus-
tomer can now be computed in PrepB. First, the 
shortage costs (prices) are given for each cluster in 
Data 2 format. Then, the raw simulation data ob-
tained in PrepA for failures and service actions leads 
to the shortage cost of each cluster and each T-
interval. Summing with respect to clusters yields the 
customer’s cost distribution/T, and summing with 
respect to T-intervals yields e.g. cost sharing among 
clusters. 

The final crystallization step produces the short-
age costs for all clusters of this customer (again in 
Data 2 format). If a customer’s consumption was not 
modeled using PrepA, this cost data must be as-
sessed directly. 

 
Data 2. Customer’s loss caused by shortage. 
Loss caused by 1 and 2 lacking parts: 

- Cost per shortage (euro) 
- Time-dependent cost in 0…t0 (euro/tu) 
- Time-dependent cost in t0… (euro/tu) 
- Time instant of change, t0  (tu) 

The loss for more than two lacking parts is determined by the 
difference between one and two parts 



3.4 Cost accounting (StockB) 
For the final cost calculation, the following inputs 
already exist: Supply prices (Sect. 3.1), the logbook 
(Sect. 3.2), and customers’ shortage prices (Sect. 
3.3). General economic figures are now given: item 
purchase price, item holding cost, annual percentage 
rate, value decline, and value of lost item. There can 
also be a simple penalty contract between a cus-
tomer and the stock keeper: the stock pays a fraction 
(0 ≤ ps ≤ 1) of the customer’s shortage costs. 

Results follow for cost areas like facilities, up-
keep, delivery, interests, waste, value decline, and 
customers’ shortage (fraction ps and 1-ps). Since the 
model keeps these cost areas separated, and arbitrary 
selected combinations can be summed, the costs can 
be shared between responsible parties. 

4 SPARE VALVE INVENTORY (A CASE 
STUDY) 

We applied our model in a case study concerning the 
control valve of the air turbine start of a Fighter Air-
craft F-18 (Hagmark et al. 2004). The failure data 
delivered by the Finnish Air Forces comprised about 
7 years, 142 valves with age range 0…1511 opera-
tions, totally 94097 operations and 150 failures.  

When a valve does not operate correctly at a gas 
turbine start, a repaired spare valve is taken from the 
stock, and is installed. When 6 valves have failed 
(one by one), these valves are sent to service for re-
pair (or renewing). In other words: There is one cus-
tomer, who requests for one part unpredictably 
(Sect. 2.3). The order quantity is q = 6, and an order 
is placed when the stock balance have reached the 
order point r = M-6, where M is the so far unknown 
number of spare valves (Sect. 3.1).  

The maintenance time for 6 valves is 18 days and 
three weekends waste 6 days extra, so the total time 
that 6 valves spent in service is 24 days. The trip to 
service and back takes 16 days. In other words: We 
have one part supplier with 40 days lead-time on the 
average (Sect. 3.1). The deviation was directly as-
sessed to be 15 days. 

Data analysis yields the unpredictable consump-
tion of spare valves: On the average 33.1 valves per 
year, with variance 33.6 and slight season depend-
ence (Sect. 2.3-4). Now, how large must M be to 
avoid a shortage possibility of more than (say) 1%? 
Stock simulation yields P2 = 0.9919 if M = 17, and 
P2 = 0.9875 if M = 16 (Sect. 3.2). Thus, an accept-
able service capacity is guaranteed by keeping 17 
spare valves. 

5 CONCLUSIONS 

Experimentation with the inputs of our model can 
solve a rich variety of problems concerning inven-
tory design and related topics. The multitude of vari-
ables and concepts enables a vast number of practi-
cal interpretations. There is much to do in mapping 
out possibilities. For example, suitable interpreta-
tions of the pair ‘supplier/customer’ cover lateral 
shipment of parts (Wong et al. 2006), the steps in a 
multi-echelon system (Rustenburg 2001), the repair 
shop as a supplier (Ni et al. 2004), etc.  

The corresponding and continuously developing 
software enlarges the applicability of the model. 
Automatic optimization of any selected cost combi-
nation can be performed, and the set of partaking 
variables {r, q, ∆t} can gradually be extended (Sect. 
3.1 & 3.4). On the other hand, optimization of e.g. 
complex multi-echelon systems would require very 
effective algorithms (cp. genetic algorithms). 

Constraint checking during optimization has also 
been implemented to some extent. For example, the 
(stock keeper’s) costs can be balanced against the 
(customer’s) risk caused by spare part shortage. 
Other constraints from budget, capacity, etc. will 
provide new challenges (Rustenburg 2000).  

At present, our model does not treat multi-item 
systems (Rustenburg, 2000). 
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