

Modeling and analysis of causes and consequences of failures

Seppo Virtanen, Ph. D., Tampere University of Technology
Per-Erik Hagmark, Ph. D., Tampere University of Technology
Jussi-Pekka Penttinen, M. Sc., Tampere University of Technology

Key Words: cause, consequence, event, logic, modeling, simulation

SUMMARY & CONCLUSIONS

This paper presents a computer-supported method for
modeling and analyzing causes and consequences of failures.
The developed method is one of the main results from a nine-
year research project, which was completed in February 2005
and carried out by Tampere University of Technology.

The applicability of the developed methods and software
has been tested in the companies, which have been involved in
the research project. The participating companies are both
manufacturers and users in metal, energy, process and
electronics industries. Their products and systems have to
respond to high safety and reliability demands. Most of the
participating companies have started to apply the proposed
method and software for modeling and analysis of failure logic
for their products and systems. The application of the method
forces experts to identify all potential component hardware
failures, human errors, possible disturbances and deviations in
the process, and environmental conditions related to the
selected TOP-event. Based on experience, and with the help
of the methods, it is possible to find out those problem areas of
the design stage, which can delay product development and/or
reduce safety and reliability.

1. INTRODUCTION

Modeling and analysis of causes and consequences of

failures form a foundation for quantitative investigation of the
reliability, safety and risks related to a design entity. The
general term “entity” or “design entity” can stand for function,
system, equipment, mechanism, or any kind of part.

A “cause tree” consists of such (well-defined) causes and
interconnected causalities that can lead to the occurrence of a
TOP-event. Thus, a cause tree structure forms a basis for a
failure logic model of the design entity in question. A
“consequence tree” again describes the possible chains of
consequences initiated from a TOP-event. A consequence
may further cause other consequences, either exclusively or
independently. Finally, a combination of cause trees and a
consequence tree, illustrated in Figure 1, will be called a
“cause-consequence tree”. A cause-consequence tree may for
example contain several separate chains of events that lead to
the same consequence. (Note the chains to consequences 1 and
2 in Figure 1.)

The cause tree model is used to define the occurrence of
the TOP-event, from which the consequences to be studied

originate. Conditional relations between consequences may
also be modeled precisely by using cause trees. The
developed method can further describe relations and shared
causes between cause and consequence structures. The
consequence tree does not offer any additional logical
structure, but it makes it possible to model such consequences,
which have conditional relations to the cause tree structures.
It is also possible to model and analyze several TOP-events
simultaneously.

For the analysis of causes and consequences of failures,
the root cause probabilities and the gate probabilities are first
estimated, and then the modeled failure logic is analyzed
through stochastic simulation. The developed method is
simple enough to be applicable also for the analysis of very
large models. Notwithstanding, it is still capable to produce
exact and useful results.

TOP
event
1000

Condi-
tion 11

Cause
tree

Conse-
quence 1

Condi-
tion 12

Conse-
quence 2

Condi-
tion 13

Conse-
quence 3

Condi-
tion 15

Conse-
quence 2

Condi-
tion 14

Conse-
quence 4

Condi-
tion 16

Conse-
quence 1

Cause
tree

Cause
tree

Cause
tree

Cause
tree

Cause
tree

Cause
tree

Figure 1. Cause-consequence Structure

The structure of the paper is as follows: In section 2, the

developed cause tree model is introduced, and in section 3 the
developed method for modeling and analyzing a consequence
tree is presented.

1-4244-0008-2/06/$20.00 (C) 2006 IEEE

2. THE CAUSE TREE MODEL

2.1 The Gate Model

An event alone or together with other events can cause a
new event. In other words, the state of an input event is either
x = 1 (occurring, true), or x = 0 (not occurring, false), and the
equivalent state of the gate (or gate event) is determined with
a partly logical and partly stochastic mechanism. The gate
mechanism will be characterized by giving the data column

()T
nC,,C,C,p,b,a,G …21 (1)

G ID-number of the gate (event), positive integer
a, b Logic parameters, 0 ≤ a ≤ b ≤ n, integers
 p Conditional probability, 0 < p ≤ 1
| Ci | ID-number of input (event), i = 1, 2,…, n
Ci<0 Input (i) is first negated (NOT operator).

The state of a gate (gate event) G is a random variable

depending on the states of the input events:

() ()pUbCxax
n

i
iCG i

≤⋅









≤<−≤= ∑

=

ΦΦΦ
1

0 (2)

where U is a random variate from the uniform distribution on
the unit interval, and the truth function Φ(“statement”) equals
1 if “statement” is true, and otherwise 0. Shortly: The logic
of the gate is true, if at least a, and at most b of the inputs are
true. If so, the gate event is true with probability p.

Example. The gate ()T,,,.,,, 43190218 − in Figure 2 is
an example of a non-monotonic (-3) and stochastic (0.9) gate.
The variety generation formula (2) takes now the form:

()() ()90211 4318 .Uxxxx ≤⋅≤+−+≤= ΦΦ .

Gate
ID = 8
p = 0.9

a = 1 b = 2

Cause
ID = 1 Cause

ID = 3

Cause
ID = 4

NOT

Figure 2. A gate.

By varying the parameters a, b, p, and by using the NOT
operator (Ci<0), it is possible to model logically complicated
and stochastic gates. For example, “inhibit” structure [1] is
embedded in our gate model by definition. The probability of
the conditional event is just the model parameter p < 1 (e.g.
gate 8 in fig.2). Further, by choosing a = b in our model we
have a natural generalization of the XOR (exclusive-OR) gate.
The normal logical XOR gate [2] corresponds of course to the
stronger choice a = b = 1, p = 1. The following table lists the
simplest gate types.

Type of gate a b p

OR 1 n 1

AND n n 1

Voting, k/n (0<k<n) k n 1

Generalized Inhibit a b <1

Generalized XOR (1<k<n) k k 1

2.2 Cause Tree Structure

A cause tree is a net of events, where the causally directed
connections between the events are assumed not to alter from
time to time. The mechanism of the occurrence of a gate
event was defined in section 2.1. If an event is not an input to
any gate, it is called a TOP-event. If an event has no inputs, it
is called a root cause (or basic event). If wanted, a root cause
can also be interpreted as a gate, whose logic is always true:
a=0, b=∞.

Example. Different sequences of two causes can be
modeled to have different consequences, Figure 3. Observe
the Priority-AND structures.

Cause
ID = 1

Cause
ID = 2

Condition
1 before 2

ID = 3

Sequence 1 before 2
ID = 10
p = 1

a = 3 b = 3

TOP
ID = 30
p = 1

a = 1 b = 1

Sequence 2 before 1
ID = 20
p = 0.8

a = 3 b = 3

NOT

Figure 3. A cause tree with Priority-AND gates

A cause tree can be fully expressed with a structure
matrix as follows. Each column of the matrix is the data
column of a gate (1). Because of the number of gates’ inputs
various, the shorter ones are filled with zeros to obtain equal
lengths for all columns of the matrix. For example, a structure
matrix of the cause tree in Figure 3 is
 The order of columns is sufficiently determined by the
following principle: If a gate is an input to another gate, then
its column is located to the left. The simulation of the tree
proceeds in the matrix from left to right, so the inputs of a gate
are always generated before the gate itself. In other words, the
simulation order will not contradict the chronological order.





























− 033
2022
1011
18.01
133
133

302010

3

2

1

C
C
C
p
b
a
G

. (3)

2.3 Construction of cause tree graphic

During the research project, we have developed the Event
Logic Modeling and Analysis Software (ELMAS) tool. After
the identification of the events related to the TOP-event,
experts examine the generated event list one by one and
indicate the event’s cause and consequence connections with
the other events. Based on the expert’s decisions, ELMAS
draws the logic diagram on the screen. The same cause can
occur in many places in the logic. On the computer screen the
expert can drag and drop the events in to the right position
based on his/her best understanding of the logic. If the event
is moved so that it leads to a loop in the tree, ELMAS gives a
warning and rejects the choice. After the causes and
consequences of events are determined, the types of gates are
defined (Figure 4).

The same cause tree model (2.2) is also used in software
for allocation of reliability and availability requirements
(RAMalloc), and simulation of reliability and maintenance
costs (RAMoptim).

2.4 Simulation of the failure logic

If the logic in the modeled cause tree is simple enough, it

can be directly studied by using analytical means, for example
minimal cut sets. When the causes and their interconnected
causalities are complex and the logic is not monotonic,
stochastic simulation is highly preferred. The simulation data
leads to a variety of useful results.

Before the simulation, the probabilities of the occurrence
of the root causes are estimated. For the estimation of these
probabilities, several different types of expert judgment
methods are integrated into ELMAS. Each of these methods
defines the probability within a short period of time, dt, or at a
random moment.

At the beginning of a simulation process, the random
occurrence of the root causes is simulated. After this, the
occurrences of the gates are generated in a “chronological”
order based on the cause tree matrix. One simulation round
defines the complete state of the entire cause tree within a
period of length dt.

After a sufficient number of simulation rounds, the
statistical information about the behavior of the studied object
is representative. The developed software assists in defining
how many simulation rounds are required. During the
simulation, it is possible to see on the screen (a) how many of
all the possible combinations have already occurred and (b) an
estimation of the maximum probability of the combinations
that have not yet occurred.

Generated cause tree structure

Indicate the event's
causes and

consequences

Select
 TOP event

Identification of Events

- Failure modes
- Consequences of Failures
- Causes of Failure

- Deviation of Process and
Environmental conditions
- Consequences of Deviation
- Causes of Deviation

- Human errors
- Consequences of Human error
- Causes of Human error

Generated
event list

Event 1
Event 2
Event 3
Event 4
Event 5
.
.

Define
type of gates

Failure/Event
database

System and/or
Equipment

Simulation and
analysis

of failure logic

TOP event
ID = 1000

p = 0.8
a = 2 b = 2

Cause
ID = 6

Cause
ID = 5

Cause
ID = 8

Cause
ID = 9

Cause
ID = 7
p = 1

a = 1 b = 2

Figure 4. Principle of modeling the cause tree structure
related to the selected TOP-event with ELMAS

2.5 Results of the failure logic analysis

The raw simulation data can be refined to useful results.

The simplest is the (estimated) probability of an event:

n
n

P A
A = (4)

PA the probability of event A
 nA the number of occurrences of A
 n the total number of simulated rounds.

It is also possible to estimate conditional probabilities. The
condition can be the occurrence of an event or a combination

of events:

X

AX
XA n

n
P = (5)

PA|X conditional probability of A under condition X
 nAX the number of times A occurred under condition X
 nX the number of occurrences of condition X.

Finally, conditional probabilities can also be calculated for
combinations of the states of specific events:

X

CX
XC n

n
P = (6)

PC|X conditional probability of combination C under
condition X

 nCX the number of times C occurred under condition X
 nX the number of occurrences of condition X.

2.6 Importance measures

An importance measure describes correlative relations

between two events. The events to be studied may be chosen
freely from the model, except that the causality order is
required (otherwise, the results would not be meaningful). We
consider several importance measures [3]. They all attach
slightly different “importance values” to the events, and they
may even lead to a different order of importance. Some of
them can be found in Figure 5, [4]. All of these importance
measures are also integrated into ELMAS.

0

B
1

P1

P0

P B

P A 1 A

I RAW

I B

I RRW

Figure 5. Importance measures

The importance of event A (cause) is determined from the

event B (consequence) point of view. The current
probabilities, PA and PB, are assessed from simulation data as
described in section 2.5. If PA will increase to 1, which means
that A is always true, PB will increase to (say) P1.
Correspondingly, if PA will reduce to 0, which means B will
never occur, PB will reduce to P0.

The probabilities P0 and P1 are conditional for event B,
when event A is occurred or not occurred. Their difference is
called the Birmbaum’s importance measure

0P1PI B −= . (7)
This figure expresses the scope of how much PA can affect PB
in general. The Risk Reduction Worth describes how much the
probability of event B reduces at most, i.e., if the probability
of A can be reduced to zero:

A
B

B
RRW PI0PPI ⋅=−= . (8)

Similarly, the Risk Achievement Worth describes how much
the probability of B will increase at most, i.e., if the
probability of A happens to increase to one (9):

()A
B

B
RAW P1IP1PI −⋅=−= (9)

The Criticality importance again describes the probability that
A is the main cause to the occurrence of B (10).

B

RRW

B

A
B

B

CR

P
I

P
PI

P
0P1I =⋅=−= . (10)

2.7 Risk analysis

All events can be given commensurate losses, which
represent what will happen if the event occurs. When the
losses have been assessed for the selected causes, all needed
information for risk analysis is at hand:

α⋅= AAA CPR (11)
RA the risk value of event A
PA probability of event A
CA the extent of loss that event A causes.

The parameter α in equation (11) is used to weaken or
strengthen the importance of large damages [5]. If α > 1, the
risks of large damages are amplified. It is also possible to
compare the risks of different causes or different combinations
of causes by using the conditional probabilities.

3. CAUSE-CONSEQUENCE TREE

The definition of the occurrence of selected TOP-event
and the extent of all possible consequences of course forms
the basis for performing e.g. a complete risk analysis for the
design entity. The consequence tree is an additional structure
to be used for modeling the consequences of the TOP-event,
which itself is modeled with a cause tree. The cause-
consequence structure (Figure 1), where conditions between
consequences can be modeled with cause trees, makes it
possible to create very general models for the propagation of
consequences.

The main contribution is here the possibility to define
various conditional levels. These levels do not need to be
independent. Interconnections can be taken into account.
Some causes in the cause tree model can perhaps be defined
only after some consequences have occurred. This may also
lead to a situation where the occurrence of some consequence
determines the occurrences of some root cause in a cause tree.

3.1 Modeling consequences of events

The consequence tree consists of events, which have two
states like the events in the cause tree model. When a
consequence is true (occurring), it may cause other
consequences. The propagation of consequences, starting with
a TOP-event, proceeds in a way similar to the cause tree. A
consequence “gate” can ramify in a pre-defined set of
consequences (outputs). Our model offers two branching
types, independent or exclusive.

Independent branching means that several alternatives
can occur at the same time and with their own probability.

This type is typical for the first level just after TOP. For
example, if the TOP-event is a certain type of failure, several
types of damage can follow the same failure (human,
environmental, property, business, etc).

Exclusive branching means that at most one alternative
follows. This type is typical for the second level. For
example, human damage can be classified as “fatal”, “severe”
or “minor”, and business damage can be classified as
“enormous”, “big”, “average” or “minor”.

3.2 Modeling conditionality between consequence events

The binary state of a condition between consequences is
modeled with a cause tree. This way it is of course possible to
describe very complicated conditions. It is also possible to
model more conditional levels than only one level before
failure and one after. The first conditional level is usually a
calendar time level. If the studied object should always
operate, this level is trivial. Otherwise it is possible to
precisely define the planned non-operational times, for
example, maintenance time, by using cause tree structure.

The next level can be e.g. the normal operation level of
the studied entity. At this level, all events related to the
normal operation are defined. Some of these events are used
as conditions in the next levels. The occurrence of these
conditions can cause some consequences, which are pre-
conditions to the next levels. These pre-conditions may be
e.g. different types of failures of the object operation or just
situations, where operation of the object is started.

With the developed method, it is thereby possible to model
different levels of operation of the studied entity before getting
into the failure levels. These operation levels can be, for
example, different running modes of the entity. The failures
can also be divided into different levels. For example, some
failure may cause system overheating, overheating may cause
fire, and fire may spread to different parts of the system. The
current running mode of the system may affect how the fire
will spread. In other words, there could also be connections
between an operating level and a failure level.

3.3 Consequence matrix

A consequence tree can be described precisely with the
corresponding matrix. This consequence matrix is created
similarly as the cause tree matrix. Every column of the matrix
describes the consequences of a certain consequence event,
and the columns are arranged in a chronological order, the
simulation order. Every consequence has its own identity
code (ID), and the corresponding column contains information
about the next level consequences:

()T
nn)conseq|cond(,),conseq|cond(,excl,ID …11 (12)

The field excl in the column (12) defines whether the
subsequent consequences are exclusive or independent
(section 3.1). The field (condi | conseqi) contains two values.
The first one is the ID of the condition of the next level
consequence, that is, the ID of some cause from the cause tree
structure. The latter value is the ID of the possible next level
consequence.

An example of a consequence tree is shown in Figure 6.

The corresponding consequence matrix and the cause structure
matrix are given by (13) and (14), respectively. The first
consequence ID=100 has the second level consequences
ID=200 and ID=300, which are exclusive.

ID 1

ID 2 ID 3

ID 4
AND

ID 5 (Top)
OR

 ID 100
1000 €

ID 9
AND

ID 6 ID 3

 ID 200
400000 €

ID 10
XOR

ID 7 ID 8

 ID 300
30000 €

Figure 6. A cause-consequence tree



















30010
20091005

1000

22

11

|conseq|cond
||conseq|cond

TRUEFALSEexlusive
ID

 (13)



























− 8343
7612
1111
1222
1212

10954

2

1

C
C
p
b
a
G

 (14)

3.4 Simulation and analysis of cause-consequence tree

Exactly the same simulation method that is used in the
simulation of cause trees is applied to simulate the state of
conditions between consequences. The simulation results are
also identical with the results of the cause tree simulation.
The only difference is that a level of the consequence structure
is simulated only if its pre-condition is true.

By the calculation of a consequence level is meant the
handling of a column in the consequence matrix. During a
simulation round all conditional levels are treated in
chronological (i.e., matrix column) order. At least one level is
always handled (matrix column ID=0), because the first
consequence of the tree is always true. The next level is
handled if the consequence of that level has occurred.

In example Figure 6, the causes under gate 5 are at the
first level. The causes under gates 9 and 10 are at the second
level, which is handled only if consequence 100 is true. Note
that root cause 3 belongs to the first level and it is used in the
second level, too, as an input to gate 9. There it promotes the
occurrence of consequence 200 if it is in the “not occurring”
state. After all levels have been handled, one simulation

round is finished.
The example (Figure 6) was analyzed by using the

following root cause probabilities:

The simulation of consequence structure consists of only

simple testing. Therefore, it does not have remarkable effect
on the calculation time. The results from 100000000
simulation rounds were the following:

ID Loss Probability Risk

100 1000 7.03E-4 ± 6.0E-6 ~ 0.703

200 400000 4.6E-7 ± 1.4E-7 ~ 0.884

300 30000 2.95E-5 ± 1.1E-6 ~ 0.184

4. CONCLUSION

The cause-consequence tree method presented above
makes it possible to explain and describe precisely the
relations between causes and consequences of failures. The
causes can be ranked from the probability and/or risk point of
view. Results from the analysis help researchers to identify
both the most probable causes and chains of causes leading to
the TOP-event, and the most significant consequences and
chains of consequences. After ranking the causes, a more
detailed root cause analysis can be performed by applying the
event-cause-consequence method FMEA, which is integrated
into ELMAS.

5. REFERENCES

1. Fault Tree Handbook. U.S. Nuclear Regulatory

Commission, Nureg-0492. (Co-author David Haasl)
ISBN/ISSN 1051-H-02. 1981, p 209.

2. E. J. Henley, H. Kumamoto, Probabilistic Risk
Assessment and Management for Engineers and
Scientists, Second Edition, IEEE Press Piscataway, NJ.
1996, p 597.

3. M.Cheok, G. Parry, R. Serry, “Use of Importance
Measures in Risk-Informed Regulatory Applications”.
Reliability Engineering and System Safety, 1998.

4. J. P. Penttinen. Analysis of failure logic using simulation,
Master’ Thesis, Tampere University of Technology. 2005,
p 94.

5. J. Norman, McCormick, Reliability and Risk Analysis,
Methods and Nuclear Power Applications. Academic
Press. Inc. 1981, p 446.

BIOGRAPHIES
Seppo Virtanen
Machine Design and Operation Laboratory
Tampere University of Technology
Korkeakoulunkatu 6
FI-33101 Tampere, Finland

e-mail: seppo.virtanen@tut.fi

Seppo Virtanen received his B.Sc., M.Sc. and PhD. degrees
from Helsinki University of Technology, Finland. He is
currently a Professor in the Machine Design and Operation
Laboratory at the Tampere University of Technology. His
research and teaching interest includes reliability and
maintainability engineering and risk management within a
product and system design process. Professor Virtanen has
over 15 year's industry experience in the field of reliability
engineering and maintenance, which includes three years in
energy, pulp and paper industry in USA and two years
offshore industry in Norway.

Per-Erik Hagmark, PhD
Machine Design and Operation Laboratory
Tampere University of Technology
Korkeakoulunkatu 6
FI-33101 Tampere, Finland

e-mail: per-erik.hagmark@tut.fi

Per-Erik Hagmark serves on the Machine Design and
Operation Laboratory at Tampere University of Technology.
He earned his doctoral degree in Mathematics, Applied
Mathematics and Theoretical Physics at Helsinki University of
Technology in 1983 with a dissertation on generalizations of
Walsh functions and fast algorithms. His recent research
activities have been around statistics, reliability theory,
simulation, and programming.

Jussi-Pekka Penttinen, M.Sc.
Machine Design and Operation Laboratory
Tampere University of Technology
Korkeakoulunkatu 6
FI-33101 Tampere, Finland

e-mail: jussi-pekka.penttinen@tut.fi

Jussi-Pekka Penttinen received his M.Sc. decree in discrete
mathematics and software science at Tampere University of
Technology in 2005. Last one and half years Mr. Penttinen
has worked as a researcher and post-graduate student in the
Laboratory of Machine Design and Operation, where he also
finished his Master Thesis connected with the analysis of
failure logic using simulation.

ID 1 2 3 6 7 8

Prob. 0.0001 0.02 0.03 0.005 0.002 0.04

	Select a link below
	Return to Main Menu
	Return to Previous View

